Check to make sure your using a GPU as sometimes even if I put the environment to GPU it still does not use it.
# ' ' means CPU whereas '/device:G:0' means GPU import tensorflow as tf tf.test.gpu_device_name()
try running by first coping your files locally
!cp '/content/gdrive/My Drive/Colab Notebooks/dataset/training_set'
'training_set'
and then:
training_set = train_datagen.flow_from_directory('training_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('test_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
Check to make sure your using a GPU as anycodings_machine-learning sometimes even if I put the environment anycodings_machine-learning to GPU it still does not use it.,I have tried changing the runtime to GPU as anycodings_python well as TPU but both the runtimes are not anycodings_python working.,How to make a ping in Android to Google,There are many deprecations while executing anycodings_python this code. After executing anycodings_python classifier.fit_generator() , it shows 12 hrs anycodings_python remaining for 1 epoch
Here's my code:
classifier = Sequential() classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu')) classifier.add(MaxPooling2D(pool_size = (2, 2))) classifier.add(Conv2D(32, (3, 3), activation = 'relu')) classifier.add(MaxPooling2D(pool_size = (2, 2))) classifier.add(Flatten()) classifier.add(Dense(units = 128, activation = 'relu')) classifier.add(Dense(units = 1, activation = 'sigmoid')) classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) from keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator(rescale = 1. / 255, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True) test_datagen = ImageDataGenerator(rescale = 1. / 255) training_set = train_datagen.flow_from_directory('/content/gdrive/My Drive / Colab Notebooks / dataset / training_set ', target_size = (64, 64), batch_size = 32, class_mode = 'binary') test_set = test_datagen.flow_from_directory('/content/gdrive/My Drive / Colab Notebooks / dataset / test_set ', target_size = (64, 64), batch_size = 32, class_mode = 'binary') classifier.fit_generator(training_set, steps_per_epoch = 8000, epochs = 1, validation_data = test_set, validation_steps = 2000)
Check to make sure your using a GPU as anycodings_machine-learning sometimes even if I put the environment anycodings_machine-learning to GPU it still does not use it.
# ' ' means CPU whereas '/device:G:0' means GPU import tensorflow as tf tf.test.gpu_device_name()
try running by first coping your files anycodings_machine-learning locally
!cp '/content/gdrive/My Drive/Colab Notebooks/dataset/training_set'
'training_set'
and then:
training_set = train_datagen.flow_from_directory('training_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('test_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
Asritha Bodepudi | Posted December 18, 2020
Setup:
#import necessary libraries
import tensorflow as tf
#load training data and split into train and test sets
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
The output for this code snippet will look like this:
Downloading data from https: //storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
11493376 / 11490434[ === === === === === === === === === === ] - 0 s 0 us / step
Next, we define the Google Colab model using Python:
#define model
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape = (28, 28)),
tf.keras.layers.Dense(128, activation = 'relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
])
#define loss
function variable
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = True)
#define optimizer, loss
function and evaluation metric
model.compile(optimizer = 'adam',
loss = loss_fn,
metrics = ['accuracy'])
#train the model
model.fit(x_train, y_train, epochs = 5)
Epoch 1/5 1875/1875 [==============================] - 3s 2ms/step - loss: 0.3006 - accuracy: 0.9125 Epoch 2/5 1875/1875 [==============================] - 3s 2ms/step - loss: 0.1461 - accuracy: 0.9570 Epoch 3/5 1875/1875 [==============================] - 3s 2ms/step - loss: 0.1098 - accuracy: 0.9673 Epoch 4/5 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0887 - accuracy: 0.9729 Epoch 5/5 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0763 - accuracy: 0.9754 <tensorflow.python.keras.callbacks.History at 0x7f2abd968fd0>
#test model accuracy on test set model.evaluate(x_test, y_test, verbose = 2)
Expected output:
313 / 313 - 0 s - loss: 0.0786 - accuracy: 0.9761[0.07860152423381805, 0.9761000275611877]