Your model should look like this:
from keras.layers.wrappers
import TimeDistributed
model = Sequential()
model.add(LSTM(100, input_dim = num_features, return_sequences = True))
model.add(TimeDistributed(Dense(1, activation = 'sigmoid')))
This can be easily spotted when examining the summary of the model:
print(model.summary())
The Keras API provides a to_categorical() method that can be used to one-hot encode integer data. If the integer data represents all the possible values of the classes, then the to_categorical() method can be used directly; otherwise, the number of classes can be passed to the method as the num_classes parameter.,One-hot encoding is the representation of categorical variables as binary vectors. In Python, there are several ways to perform one-hot encoding on categorical data:,The code snippet below illustrates the usage of the to_categorical() method:,Let’s have a look at how one-hot encoding can be performed in Keras.
import numpy as np from keras.utils import to_categorical # # # Categorical data to be converted to numeric data colors = ["red", "green", "yellow", "red", "blue"] # # # Universal list of colors total_colors = ["red", "green", "blue", "black", "yellow"] # # # map each color to an integer mapping = {} for x in range(len(total_colors)): mapping[total_colors[x]] = x # integer representation for x in range(len(colors)): colors[x] = mapping[colors[x]] one_hot_encode = to_categorical(colors) print(one_hot_encode)
Last Updated : 21 Jun, 2022,GATE CS 2021 Syllabus
Output:
array(['Male', 'Female'], dtype = object)
array(['Nice', 'Good', 'Great'], dtype = object)
Employee_Id Gen_new Rem_new Gender_Female Gender_Male Remarks_Good Remarks_Great Remarks_Nice 0 45 1 2 0 1 0 0 1 1 78 0 0 1 0 1 0 0 2 56 0 1 1 0 0 1 0 3 12 1 1 0 1 0 1 0 4 7 0 2 1 0 0 0 1 5 68 0 1 1 0 0 1 0 6 23 1 0 0 1 1 0 0 7 45 0 2 1 0 0 0 1 8 89 1 1 0 1 0 1 0 9 75 0 2 1 0 0 0 1 10 47 0 0 1 0 1 0 0 11 62 1 2 0 1 0 0 1