reconstruction figure legend in pandas

  • Last Update :
  • Techknowledgy :

You were very close, you just need to update your legend with the years:

ax = df.plot()

years = [2005, 2007, 2008, 2009, 2011, 2012]
# you can get years from you dataframe(but without seeing the dataframe I can 't say exactly how)
      # legend also accepts a Series or numpy array ax.legend(years, loc = 'best') plt.show()

ues unique method to get every different year:

DataFrame1.plot(legend = False)
patch, labels = ax.get_legend_handels_labels()
DateFrame1.legend(str(unique(DataFrame1['Year'].value)), loc = 'best')
plt.show()

Suggestion : 2

reconstruction figure legend in pandas,How to plot multiple lines in one figure in Pandas Python based on data from multiple columns?,Copyright 2022 www.appsloveworld.com. All rights reserved.,Inconsistency when setting figure size using pandas plot method

You were very close, you just need to update your legend with the years:

ax = df.plot()

years = [2005, 2007, 2008, 2009, 2011, 2012]
# you can get years from you dataframe(but without seeing the dataframe I can 't say exactly how)
      # legend also accepts a Series or numpy array ax.legend(years, loc = 'best') plt.show()

ues unique method to get every different year:

DataFrame1.plot(legend = False)
patch, labels = ax.get_legend_handels_labels()
DateFrame1.legend(str(unique(DataFrame1['Year'].value)), loc = 'best')
plt.show()

Suggestion : 3

Plot legends give meaning to a visualization, assigning meaning to the various plot elements. We previously saw how to create a simple legend; here we'll take a look at customizing the placement and aesthetics of the legend in Matplotlib.,I generally find in practice that it is clearer to use the first method, applying labels to the plot elements you'd like to show on the legend:,By plotting empty lists, we create labeled plot objects which are picked up by the legend, and now our legend tells us some useful information. This strategy can be useful for creating more sophisticated visualizations.,The simplest legend can be created with the plt.legend() command, which automatically creates a legend for any labeled plot elements:

import matplotlib.pyplot as plt
plt.style.use('classic')
% matplotlib inline
import numpy as np
x = np.linspace(0, 10, 1000)
fig, ax = plt.subplots()
ax.plot(x, np.sin(x), '-b', label = 'Sine')
ax.plot(x, np.cos(x), '--r', label = 'Cosine')
ax.axis('equal')
leg = ax.legend();
ax.legend(loc = 'upper left', frameon = False)
fig
ax.legend(frameon = False, loc = 'lower center', ncol = 2)
fig
ax.legend(fancybox = True, framealpha = 1, shadow = True, borderpad = 1)
fig

Suggestion : 4

The function legend() adds a legend to the figure, and the optional keyword arguments change its style. By default [typing just plt.legend()], the legend is on the upper right corner and has no shadow.,Here is a useful post about reshaping data in pandas (pivot tables, stacking and unstacking columns): http://nikgrozev.com/2015/07/01/reshaping-in-pandas-pivot-pivot-table-stack-and-unstack-explained-with-pictures/,The official Pandas plotting documentation helps show the extent of the types of plots and basic presentation options available.,A single figure can include multiple lines, and they can be plotted using the same plt.plot() command by adding more pairs of x values and y values (and optionally line styles):

1._
In[]:

   import pandas as pd
2._
import pandas as pd
import pandas as pd
1._
In[]:

   df_asthma = pd.read_csv("data/asthma.csv")
2._
df_asthma = pd.read_csv("data/asthma.csv")
df_asthma = pd.read_csv("data/asthma.csv")
1._
In[]:

   df_asthma.head()
2._
df_asthma.head()
df_asthma.head()

Suggestion : 5

You can also click on the legend entries to hide/show the traces. Click-and-drag to zoom in and shift-drag to pan.,This graph is interactive. Click-and-drag horizontally to zoom, shift-click to pan, double click to autoscale,Click and drag to pan across the graph and see more of the complaints.,Now let's normalize these counts. This is super easy now that this data has been reduced into a dataframe.

import plotly.tools as tls
tls.embed('https://plotly.com/~chris/7365')
import pandas as pd
from sqlalchemy
import create_engine # database connection
import datetime as dt
from IPython.display
import display

import plotly.plotly as py # interactive graphing
from plotly.graph_objs
import Bar, Scatter, Marker, Layout
display(pd.read_csv('311_100M.csv', nrows = 2).head())
display(pd.read_csv('311_100M.csv', nrows = 2).tail())
!wc - l < 311_100 M.csv # Number of lines in dataset
 8281035
disk_engine = create_engine('sqlite:///311_8M.db') # Initializes database with filename 311_8 M.db in current directory

Suggestion : 6

matplotlib.pyplot.plot() , matplotlib.pyplot.show() , matplotlib.pyplot.title() , matplotlib.pyplot.figure()

def compute_roc(y_true, y_pred, plot = False):
   ""
"
TODO
   : param y_true: ground truth: param y_pred: predictions: param plot:
   : return:
      ""
"
fpr, tpr, _ = roc_curve(y_true, y_pred)
auc_score = auc(fpr, tpr)
if plot:
   plt.figure(figsize = (7, 6))
plt.plot(fpr, tpr, color = 'blue',
   label = 'ROC (AUC = %0.4f)' % auc_score)
plt.legend(loc = 'lower right')
plt.title("ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR")
plt.show()

return fpr, tpr, auc_score
def plot_wh_methods(): # from utils.utils
import * ;
plot_wh_methods()
# Compares the two methods
for width - height anchor multiplication
# https: //github.com/ultralytics/yolov3/issues/168
   x = np.arange(-4.0, 4.0, .1)
ya = np.exp(x)
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2

fig = plt.figure(figsize = (6, 3), dpi = 150)
plt.plot(x, ya, '.-', label = 'yolo method')
plt.plot(x, yb ** 2, '.-', label = '^2 power method')
plt.plot(x, yb ** 2.5, '.-', label = '^2.5 power method')
plt.xlim(left = -4, right = 4)
plt.ylim(bottom = 0, top = 6)
plt.xlabel('input')
plt.ylabel('output')
plt.legend()
fig.tight_layout()
fig.savefig('comparison.png', dpi = 200)
def plot(PDF, figName, imgpath, show = False, save = True):
   # plot
output = PDF.get_constraint_value()
plt.plot(PDF.experimentalDistances, PDF.experimentalPDF, 'ro', label = "experimental", markersize = 7.5, markevery = 1)
plt.plot(PDF.shellsCenter, output["pdf"], 'k', linewidth = 3.0, markevery = 25, label = "total")

styleIndex = 0
for key in output:
   val = output[key]
if key in ("pdf_total", "pdf"):
   continue
elif "inter" in key:
   plt.plot(PDF.shellsCenter, val, STYLE[styleIndex], markevery = 5, label = key.split('rdf_inter_')[1])
styleIndex += 1
plt.legend(frameon = False, ncol = 1)
# set labels
plt.title("$\\chi^{2}=%.6f$" % PDF.squaredDeviations, size = 20)
plt.xlabel("$r (\AA)$", size = 20)
plt.ylabel("$g(r)$", size = 20)
# show plot
if save: plt.savefig(figName)
if show: plt.show()
plt.close()
def make_plot(files, labels):
   plt.figure()
for file_idx in range(len(files)):
   rot_err, trans_err = read_csv(files[file_idx])
success_dict = count_success(trans_err)

x_range = success_dict.keys()
x_range.sort()
success = []
for i in x_range:
   success.append(success_dict[i])
success = np.array(success) / total_cases

plt.plot(x_range, success, linewidth = 3, label = labels[file_idx])
# plt.scatter(x_range, success, s = 50)
plt.ylabel('Success Ratio', fontsize = 40)
plt.xlabel('Threshold for Translation Error', fontsize = 40)
plt.tick_params(labelsize = 40, width = 3, length = 10)
plt.grid(True)
plt.ylim(0, 1.005)
plt.yticks(np.arange(0, 1.2, 0.2))
plt.xticks(np.arange(0, 2.1, 0.2))
plt.xlim(0, 2)
plt.legend(fontsize = 30, loc = 4)
def show(mnist, targets, ret):
   target_ids = range(len(set(targets)))

colors = ['r', 'g', 'b', 'c', 'm', 'y', 'k', 'violet', 'orange', 'purple']

plt.figure(figsize = (12, 10))

ax = plt.subplot(aspect = 'equal')
for label in set(targets):
   idx = np.where(np.array(targets) == label)[0]
plt.scatter(ret[idx, 0], ret[idx, 1], c = colors[label], label = label)

for i in range(0, len(targets), 250):
   img = (mnist[i][0] * 0.3081 + 0.1307).numpy()[0]
img = OffsetImage(img, cmap = plt.cm.gray_r, zoom = 0.5)
ax.add_artist(AnnotationBbox(img, ret[i]))

plt.legend()
plt.show()
def plot_mul(Y_hat, Y, pred_len):
   ""
"
PLots the predicted data versus true data

Input: Predicted data, True Data, Length of prediction
Output: return plot

Note: Run from timeSeriesPredict.py ""
"
fig = plt.figure(facecolor = 'white')
ax = fig.add_subplot(111)
ax.plot(Y, label = 'Y')
# Print the predictions in its respective series - length
for i, j in enumerate(Y_hat):
   shift = [None
      for p in range(i * pred_len)
   ]
plt.plot(shift + j, label = 'Y_hat')
plt.legend()
plt.show()