change your initializer part, you can do like this:
self.conv1 = tf.keras.layers.Conv2D(filters = 10,
kernel_size = (10, 30),
strides = (1, 30),
padding = "same",
data_format = "channels_last",
activation = tf.keras.activations.relu,
use_bias = True,
kernel_initializer = tf.keras.initializers.glorot_normal(),
bias_initializer = tf.keras.initializers.zeros())
How to pass an argument to the Java FX application when building install4j?,How to store array value in json to a single node using neo4j. is that possible?,Please help me with the following. I can't anycodings_keras seem to save my model. As you can see I do anycodings_keras reference the instance of the Sequential() anycodings_keras method,Getting incorrrect(?) error when using File.moveTo
Please help me with the following. I can't anycodings_keras seem to save my model. As you can see I do anycodings_keras reference the instance of the Sequential() anycodings_keras method
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.InputLayer(input_shape = [timePortion, 1]))
model.add(tf.keras.layers.Conv1D(kernel_size = timePortion,
filters = 1000,
strides = 1,
use_bias = False,
activation = "relu",
kernel_initializer = tf.keras.initializers.VarianceScaling))
model.summary()
model.add(tf.keras.layers.Dropout(rate = 0.2))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(32,
activation = 'relu',
kernel_initializer = tf.keras.initializers.VarianceScaling))
model.add(tf.keras.layers.Dense(8,
activation = 'relu',
kernel_initializer = tf.keras.initializers.VarianceScaling))
model.add(tf.keras.layers.Dense(1,
kernel_initializer = tf.keras.initializers.VarianceScaling))
model.summary()
model.compile(optimizer = tf.keras.optimizers.Adam(lr = 0.001),
loss = "mean_squared_error",
metrics = ["accuracy", "mae"])
filepath = "model.h5"
model.fit(inputs,
labels,
steps_per_epoch = 1,
epochs = 2,
shuffle = False,
verbose = 1)
tf.keras.models.save_model(model,
filepath,
overwrite = True,
include_optimizer = True)
I'm having problems saving my model in a anycodings_keras Jupyter notebook. The file actually gets anycodings_keras created but then I get this error. It's anycodings_keras weird cause I am referencing the model anycodings_keras instance.
TypeError: get_config() missing 1 required positional argument: 'self'
The problem is with the kernel anycodings_keras initializer that cannot be serialized anycodings_keras because you haven't instantiated it. To anycodings_keras instantiate it add round brackets ():
kernel_initializer = tf.keras.initializers.VarianceScaling()
A Keras model instance. If the original model was compiled, and saved with the optimizer, then the returned model will be compiled. Otherwise, the model will be left uncompiled. In the case that an uncompiled model is returned, a warning is displayed if the compile argument is set to True.,For example, a Dense layer returns a list of two values: the kernel matrix and the bias vector. These can be used to set the weights of another Dense layer:,Note that clone_model will not preserve the uniqueness of shared objects within the model (e.g. a single variable attached to two distinct layers will be restored as two separate variables).,Note that the model weights may have different scoped names after being loaded. Scoped names include the model/layer names, such as "dense_1/kernel:0". It is recommended that you use the layer properties to access specific variables, e.g. model.get_layer("dense_1").kernel.
Model.save( filepath, overwrite = True, include_optimizer = True, save_format = None, signatures = None, options = None, save_traces = True, )
from keras.models import load_model model.save('my_model.h5') # creates a HDF5 file 'my_model.h5' del model # deletes the existing model # returns a compiled model # identical to the previous one model = load_model('my_model.h5')
tf.keras.models.save_model( model, filepath, overwrite = True, include_optimizer = True, save_format = None, signatures = None, options = None, save_traces = True, )
>>> model = tf.keras.Sequential([
...tf.keras.layers.Dense(5, input_shape = (3, )),
...tf.keras.layers.Softmax()
]) >>>
model.save('/tmp/model') >>>
loaded_model = tf.keras.models.load_model('/tmp/model') >>>
x = tf.random.uniform((10, 3)) >>>
assert np.allclose(model.predict(x), loaded_model.predict(x))
tf.keras.models.load_model( filepath, custom_objects = None, compile = True, options = None )
Model.get_weights()
Last updated: Apr 20, 2022
Copied!class Employee():
def __init__(self, name, salary):
self.name = name
self.salary = salary
def get_name(self):
return self.name
#⛔️ TypeError: Employee.get_name() missing 1 required positional argument: 'self'
print(Employee.get_name())
Copied!class Employee():
def __init__(self, name, salary):
self.name = name
self.salary = salary
def get_name(self):
return self.name
#✅ instantiate class first
emp1 = Employee('Alice', 100)
#✅ call method on class instance
print(emp1.get_name()) #👉️ "Alice"
Copied!class Employee():
def __init__(self, name, salary):
self.name = name
self.salary = salary
#👇️ specified self arg
def get_name(self):
return self.name
emp1 = Employee('Alice', 100)
print(emp1.get_name()) #👉️ "Alice"
Copied!class Employee():
def __init__(self, name, salary):
self.name = name
self.salary = salary
@staticmethod
def get_name():
return 'Alice'
print(Employee.get_name()) #👉️ "Alice"
Copied!class Employee():
def __init__(self, name, salary):
self.name = name
self.salary = salary
@classmethod
def get_name(cls):
print(cls)
return 'Alice'
print(Employee.get_name()) #👉️ "Alice"